EXISTENCE OF SOLUTIONS TO THE EVEN DUAL
MINKOWSKI PROBLEM

YIMING ZHAO

Abstract

Recently, Huang, Lutwak, Yang & Zhang discovered the duals
of Federer’s curvature measures within the dual Brunn-Minkowski
theory and stated the “Minkowski problem” associated with these
new measures. As they showed, this dual Minkowski problem has
as special cases the Aleksandrov problem (when the index is 0)
and the logarithmic Minkowski problem (when the index is the
dimension of the ambient space) — two problems that were never
imagined to be connected in any way. Huang, Lutwak, Yang &
Zhang established sufficient conditions to guarantee existence of
solution to the dual Minkowski problem in the even setting. In this
work, existence of solution to the even dual Minkowski problem
is established under new sufficiency conditions. It was recently
shown by Boroczky, Henk & Pollehn that these new sufficiency
conditions are also necessary.

1. Introduction

The classical Brunn-Minkowski theory sits at the core of convex ge-
ometry. The family of area measures S;(K, -), introduced by Fenchel &
Jessen and Aleksandrov (see Section 4.2 [56]), is one of the fundamen-
tal families of geometric measures in the Brunn-Minkowski theory. The
Minkowski-Christoffel problem asks for necessary and sufficient condi-
tions on a given measure so that it is precisely the j-th area measure of a
convex body (compact, convex subset of R” with non-empty interior). A
major breakthrough regarding the Minkowski-Christoffel problem was
recently achieved by Guan & Ma [27]. When j = n — 1, this prob-
lem is the classical Minkowski problem, which, in the smooth case, is
the problem of prescribing Gauss curvature (given as a function of the
normals). Important regularity results for the Minkowski problem are
due to Cheng & Yau [13], etc. When j = 1, this problem is known
as the Christoffel problem. Apart from area measures, another impor-
tant family of measures in the Brunn-Minkowski theory consists of the
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curvature measures C;(K, -) introduced by Federer (see page 224 [56]).
The characterization problem for the curvature measure Cp(K, ), also
known as Aleksandrov’s integral curvature, is the famous Aleksandrov
problem and is a counterpart of the classical Minkowski problem.

In addition to the classical Brunn-Minkowski theory, the L, Brunn-
Minkowski theory came to life roughly two decades ago. The birth of
the L, Brunn-Minkowski theory can be credited to Lutwak [42, 43]
when he began systematically investigating the p-Minkowski combina-
tion (studied earlier by Firey, see, e.g., [56]) and discovered the funda-
mental L, surface area measure S (P)(K,-). Since then, the theory has
quickly become a major focus of convex geometry. The characterization
problem for the L, surface area measure S (P)(K,-) is known as the L,
Minkowski problem. When p = 1, it is the classical Minkowski problem.
When p > 1, the L, Minkowski problem was solved by Chou & Wang
[14]. See also Hug, Lutwak, Yang & Zhang (Hug-LYZ) [33]. Two im-
portant unsolved singular cases of the L, Minkowski problem are: the
logarithmic Minkowski problem (prescribing the cone volume measure
SO)(K,-)) and the centro-affine Minkowski problem (prescribing the
centro-affine surface area measure S (K, -)).

Another important theory in modern convex geometry is the dual
Brunn-Minkowski theory. The dual Brunn-Minkowski theory, intro-
duced by Lutwak in 1975, is a theory that is in a sense dual to the
classical Brunn-Minkowski theory. A good discussion of the dual Brunn-
Minkowski theory can be found in Section 9.3 of Schneider’s classi-
cal volume [56]. Quoting from Gardner, Hug & Weil [19]:“The dual
Brunn-Minkowski theory can count among its successes the solution of
the Busemann-Petty problem in [16], [20], [41], and [68]. It also has
connections and applications to integral geometry, Minkowski geome-
try, the local theory of Banach spaces, and stereology; see [17] and
the references given there.” The dual theory studies interior properties
of convex bodies while the classical theory is most effective in dealing
with boundary information of convex bodies. In the recent revolution-
ary work [32], Huang-LYZ discovered fundamental geometric measures,
(jvuals of Federer’s curvature measures, called dual curvature measures
Cj(K,-), in the dual Brunn-Minkowski theory. This new family of mea-
sures magically connects the well-known cone volume measure (j = n)
and Aleksandrov’s integral curvature (j = 0). These measures were
never imagined to be related.

Huang-LYZ [32] asked for necessary and sufficient conditions on a
given measure p on S"~! so that it is precisely the j-th dual curvature
measure of a convex body. This problem is called the dual Minkowski
problem. The dual Minkowski problem has the Aleksandrov problem
(j = 0) and the logarithmic Minkowski problem (5 = n) as special
cases.
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Since the unit balls of finite dimensional Banach spaces are origin-
symmetric convex bodies and the dual curvature measure of an origin-
symmetric convex body is even, it is of great interest to study the fol-
lowing even dual Minkowski problem.

The even dual Minkowski problem: Given an even finite Borel
measure  on S" ' and j € {0,1,--- ,n}, find necessary and sufficient
condition(s) on p so that there exists an origin-symmetric convez body
K such that p(-) = 5'j(K, ).

When the given measure p has a density, solving the (even) dual
Minkowski problem is equivalent to solving the following Monge- Ampere
type equation on S"71,

(1) h()[Tsnsh(e) + h()of"det(H(v) + h(e)T) = f(v),

where the given data f is a non-negative (even) integrable function on
S7=1. Here Vgn-1h is the gradient of h on S"~!, H is the Hessian
matrix of h with respect to an orthonormal frame on S”~!, and I is the
identity matrix.

It is perhaps not surprising that the even dual Minkowski prob-
lem is connected to subspace concentration, since subspace concentra-
tion is key to the solution of the even logarithmic Minkowski problem,
see Boroczky-LYZ [9]. In Huang-LYZ [32], subspace mass inequalities
which limit the amount of concentration a measure can have within sub-
spaces were given and they were proven to be sufficient for the existence
of a solution to the dual Minkowski problem for indices other than 0. As
one may see from [32], it turns out that the techniques and estimates
needed to solve the even dual Minkowski problem for intermediate in-
dices are significantly more delicate than those required by solving the
even logarithmic Minkowski problem. In the Appendix of the current
paper, when j = 2,--- ,n — 1, important examples of convex bodies,
whose j-th dual curvature measures violate the subspace mass inequali-
ties given in [32], are exhibited. A new set of subspace mass inequalities
will be presented and it will be shown that they are sufficient for the
existence part of the dual Minkowski problem. The key estimate is in
Lemma 4.1. Very recently, Boroczky, Henk & Pollehn [7] showed that
the new set of subspace mass inequalities are also necessary for the ex-
istence part of the even dual Minkowski problem. One should note that
solving the dual Minkowski problem with measures as the given data
is more difficult than solving the already complicated partial differen-
tial equation (1.1). There appears to be no approximation argument
known that would reduce the general problem to solving just (1.1). In
fact, when the given measure has a density, the measure trivially sat-
isfies any subspace mass inequalities. It is precisely when the measure
has a singular part that the constants appearing in the subspace mass
inequalities become critical.
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Note that the examples exhibited in Appendix and the new subspace
mass inequalities were independently discovered by Boroczky, Henk &
Pollehn [7] (without showing that the inequalities are sufficient for the
existence of a solution to the even dual Minkowski problem).

Quermassintegrals, which include volume and surface area, are the
fundamental geometric invariants in the classical Brunn-Minkowski the-
ory. Quermassintegrals have strong geometric significance in that they
are proportional to the mean of areas of orthogonal projections of the
given convex body onto all lower dimensional subspaces (of a given di-
mension) of R™ and they are (up to a constant) independent of the
dimension of the ambient vector space. In particular, for j = 1,--- | n,
the (n — j)-th quermassintegral of a convex body K may be defined by

(12) W) =2 [ viklede,
Wi JG(n.)

where Vj; is Lebesgue measure in R7 and the integration is with respect
to the Haar measure on the Grassmannian manifold G(n, j) containing
all j-dimensional subspaces of R™. Here K| stands for the image of the
orthogonal projection of K onto { € G(n,j) and wj is the j-dimensional
volume of the unit ball in R7. For j = 0,--- ,n — 1, the area measure
S;(K,-) can be defined to be the unique Borel measure on S"~! that
makes the following variational formula for the quermassintegral valid
for each convex body L in R",

(1.3) iWn—j—l([ht])

- / i (0)dS;(K, ),
dt =0+ gn—1
where [h] is the family of convex bodies defined by [hy] = {z € R™ :
x-v < hi(v)+thr(v)} for all sufficiently small ¢, and hg, hy, are support
functions of K, L.

The Minkowski-Christoffel problem is the problem of characterizing
area measures.

When j = n — 1, the Minkowski-Christoffel problem is the classical
Minkowski problem. The problem was first studied by Minkowski when
the given measure is either discrete or has a continuous density and later
solved by Aleksandrov and Fenchel & Jessen for arbitrary measures,
see, for example, page 461 in Schneider [56]. Important contributions
towards the regularity of the solution to the Minkowski problem include
Caffarelli [11], Cheng & Yau [13], Nirenberg [49], etc. The solution to
the Minkowski problem is a critical ingredient in the proof of Zhang’s
affine Sobolev inequality, an affine inequality that is stronger than the
classical Sobolev inequality, see [66].

When j = 1, the Minkowski-Christoffel problem is known as the
Christoffel problem, which was solved independently by Firey and Berg,
see, for example, Section 8.3.2 in [56]. A short approach to their result
can be found in Grinberg & Zhang [22]. A Fourier transform approach
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can be found in Goodey, Yaskin & Yaskina [21]. For polytopes, a direct
treatment was given by Schneider [54].

For intermediate indices 1 < j < n — 1, the Minkowski-Christoffel
problem has remained open for a long time. From PDE point of view,
this problem and its variants were thoroughly studied in, for example,
Guan & Guan [23], Guan & Ma [27], and Sheng, Trudinger & Wang
[60].

Apart from area measures, another important family of measures in
the Brunn-Minkowski theory contains the celebrated curvature mea-
sures C;(K, -) introduced by Federer for sets of positive reach, see page
224 in Schneider [56]. A simpler and elegant introduction of curvature
measures for convex bodies was given by Schneider [55]. The charac-
terization problem for curvature measures may be called the general
Aleksandrov problem. Progress on this problem was made by Guan, Li
& Li [24] and Guan, Lin & Ma [26].

In particular, the 0-th curvature measure Cy(K,-) is also known as
Aleksandrov’s integral curvature. The characterization problem, in this
case, is the Aleksandrov problem. A complete solution was given by
Aleksandrov [1] using his mapping lemma. See also Guan & Li [25],
Oliker [50], and Wang [64] for other works on this problem and its
variant.

The L, surface area measure S (P)(K,-), introduced by Lutwak [42,
43], is central to the rapid-developing L, Brunn-Minkowski theory. The
L, Minkowski problem is the characterization problem for L, surface
area measures. When p = 1, the L, Minkowski problem is the same as
the classical Minkowski problem. The solution, when p > 1, was given
by Chou & Wang [14]. See also Chen [12], Hug-LYZ [33], Lutwak [42],
Lutwak & Oliker [44], LYZ [46], Jian, Lu & Wang [34], and Zhu [72,
73]. The solution to the L, Minkowski problem has led to some powerful
analytic affine isoperimetric inequalities, see, for example, Haberl &
Schuster [30], LYZ [45], Wang [63].

The L, Minkowski problem contains two major unsolved cases.

When p = —n, the L_,, surface area measure S(~™ (K, -) is also known
as the centro-affine surface area measure whose density in the smooth
case is the centro-affine Gauss curvature. The characterization problem,
in this case, is the centro-affine Minkowski problem posed in Chou &
Wang [14]. See also Jian, Lu & Zhu [35], Lu & Wang [36], Zhu [71],
etc., on this problem.

When p = 0, the L surface area measure S(O) (K, -) is the cone volume
measure whose total measure is the volume of K. Cone volume mea-
sure is the only one among all L, surface area measures that is SL(n)
invariant. It is still being intensively studied, see, for example, Barthe,
Guédon, Mendelson & Naor [4], Boroczky & Henk [6], Boroczky-LYZ
[8, 9, 10|, Henk & Linke [31], Ludwig [38], Ludwig & Reitzner [40],
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Naor [47], Naor & Romik [48], Paouris & Werner [51], Stancu [61, 62],
Xiong [65], Zhu [70], and Zou & Xiong [74]. The characterization prob-
lem for the cone volume measure is the logarithmic Minkowski problem.
A complete solution to the existence part of the logarithmic Minkowski
problem, when restricting to even measures and the class of origin-
symmetric convex bodies, was recently given by Boroczky-LYZ [9]. The
key condition is about measure concentration. In the general case (non-
even case), different efforts have been made by Bordczky, Hegediis &
Zhu [5], Stancu [61, 62], and Zhu [70]. The logarithmic Minkowski
problem has strong connections with isotropic measures (Boréczky-LYZ
[10]), curvature flows (Andrews [2, 3]), and the log-Brunn-Minkowski
inequality (Boroczky-LYZ [8], Colesanti, Livshyts & Marsiglietti [15],
Rotem [52], Saroglou [53]), an inequality stronger than the classical
Brunn-Minkowski inequality.

As Lutwak [41] showed, if the orthogonal projection in (1.2) is re-
placed by intersection, we get the fundamental geometric invariants in
the dual Brunn-Minkowski theory. The (n—j)-th dual quermassintegral

W,—;(K) may be defined by

~ w
(1.4) Wy =2 [ v nede,

Wi JG(n.)
Compare (1.2) with (1.4). The following is a special case of the varia-
tional formula for the dual quermassintegral established in Huang-LYZ
[32]. For j =1,--- ,n and a convex body K containing the origin in its
interior, the following holds for each convex body L in R™:

d —~ ~
:j/ hL(U)de(K,’U).
t=01 Sn—l

(15 (i)
Here [hy] is the family of convex bodies defined by [h] = {x € R™ :
z-v < hg(v)et"t®} for all sufficiently small t. The Borel measure

C;(K,-) uniquely determined by (1.5) is called the j-th dual curvature
measure. The similarity between (1.3) and (1.5) is remarkable. There is
a natural way of extending (1.5) to j = 0 and thus defining Cy(K, ), see
Theorem 4.5 in [32]. Dual curvature measures are concepts belonging
to the dual Brunn-Minkowski theory. Apart from the remarkable works
on the Busemann-Petty problem already mentioned, see for example,
Gardner [18], Gardner, Hug & Weil [19], Zhang [67], and especially the
book [17] by Gardner for a glimpse of the dual theory.

Of critical importance is the fact that dual curvature measures are
valuations on the set of convex bodies containing the origin in their
interiors. Valuations have been the objects of many recent works, see,
for example, Haberl [28], Haberl & Parapatits [29], Ludwig [37, 39],
Ludwig & Reitzner [40], Schuster [57, 58], Schuster & Wannerer [59]
and the references therein.
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The family of dual curvature measures harbors two important special
cases. When j = 0, the dual curvature measure Cy(K,-) is up to a
constant equal to the Aleksandrov’s integral curvature Cy(K™, -) for the
polar body. When j = n, the dual curvature measure én(K ,+) is up to
a constant equal to the cone volume measure.

The characterization problem for dual curvature measures is called the
dual Minkowski problem. When restricting attention to even measures
and the class of origin-symmetric convex bodies, this problem may be
called the even dual Minkowski problem. Since measure concentration
is critical to the even logarithmic Minkowski problem, it is expected
that the solution to the even dual Minkowski problem is also linked to
measure concentration. This is indeed the case. The following theorem
was established in [32]:

Theorem 1.1 ([32]). Suppose u is a non-zero even finite Borel mea-
sure on S"~ ! and j € {1,--- ,n — 1}. If u satisfies

u(S™ 1N L) j—1n—i

1.6 _— <1l - ,

(1.6) WS J a1
for each i-dimensional subspace L; C R™ and each i = 1,--- ,n —1

then there exists an origin-symmetric convex body K such that p(-) =
Ci(K,-).

Note that when j = 1, Equation (1.6) is the same as saying the
measure p cannot be concentrated entirely in any subspaces, which is
obviously necessary. However, when j € {2,--- ,n — 1}, for each i-
dimensional subspace L; C R", we may find a sequence of cylinders

{T%} such that

~' Ta Ll n—l i’ .f . < -’
(1.7) fim GTw Li0S") [5G, i<
a=0t  Cj(T,, S 1) 1, ifi>y.

See Appendix. Note that the constant in (1.7) is always strictly larger
than the constant in (1.6), except when ¢ = 1 or j = 1 (in which case,
they are equal). This implies that the constant in (1.6) can be improved.

In this paper, a new set of subspace mass inequalities is presented.
Let j =1,--- ,n—1. We say the measure pu satisfies the j-th subspace
mass inequality if

(18) w(S"1 N L) Looifi< g,
u(S™1) 1, ifi>y,
for each i-dimensional subspace L; C R™ and each i =1,--- ,n — 1.

Our main theorem solves the existence part of the even dual Minkowski
problem.

Theorem 1.2. Suppose i is a non-zero even finite Borel measure
on S" ' and j € {1,--- ,n —1}. If p satisfies the j-th subspace mass
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inequality, then there exists an origin-symmetric conver body K such

that pu(-) = C(K,-).

Recently, it was established by Boéroczky, Henk & Pollehn [7] that
the subspace mass inequalities (1.8) are also necessary for the existence
part of the even dual Minkowski problem.

Theorem 1.3 ([7]). Suppose K is an origin-symmetric convex body
in R" and j € {1,--- ,n — 1}. Then the j-th dual curvature measure

Cj(K,-) of K satisfies the j-th subspace mass inequality.

Hence, the existence part of the even dual Minkowski problem is
completely settled.

Theorem 1.4. Suppose p is a non-zero even finite Borel measure on
S" L and j € {1,--- ,n—1}. The measure u satisfies the j-th subspace
mass inequality if and only if there exists an origin-symmetric conver

body K such that pu(-) = Cj(K, ).

Note that Theorem 1.4 follows directly from Theorems 1.2 and 1.3.
Theorem 1.2 will be established in Section 5.

The result in this paper extends to the case j = n and the proof holds
with appropriate modification. The case j = n will not be included
because it has already been well-treated in Béroczky-LYZ [9]. The case
j = 0 is the Aleksandrov problem, which also has been completely
settled by Aleksandrov [1].

Acknowledgments. The author would like to thank the anonymous
referees for their very valuable comments.

2. Preliminary

2.1. Basics regarding convex bodies. First, we agree on some stan-
dard notations used in the current work. Throughout the paper, n will
be an integer such that n > 2. We will be working in R™ with the
standard inner product between x,y € R" denoted by x - y. The usual
Euclidean norm will be written as |z| for z € R”. We will use S¥~! for
the unit sphere in R* for & = 1,2,---. The volume of the unit ball in
R* is written as wy. Recall that the area ((k — 1)-dimensional Hausdorff
measure) of S*1 is kwy. We will use C(S" 1) for the normed vec-
tor space containing all continuous functions on the unit sphere S™1
equipped with the max norm; i.e., ||f|| = max{|f(u)| : v € S"1} for
each f € C(S™!). The subspace CT(S"!) C C(S"!) contains only
positive functions while the subspace C.(S""!) C C(S™!) contains
only even functions. The subspace CF(S"1) € C'(S"!) contains only
positive and even functions. The total measure of a given finite Borel
measure p will be written as |u|. Throughout the paper, expressions like
¢(n,7) will be used to denote “constants” whose values might change
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even within the same proof. For example, the expression c¢(n,j) is a
“constant” that only depends on n and j.

A subset K of R" is called a convez body if it is a compact convex set
with non-empty interior. The boundary of K will be denoted by JK.
The set of all convex bodies that contain the origin in the interior is
denoted by K7. The set of all origin-symmetric convex bodies will be
denoted by K. Obviously K C K.

For general references to the theory of convex bodies, books such as
[17] and [56] are recommended.

Let K be a compact convex subset in R™. The support function
hx : 8”1 — R is defined by

hi(v) = max{z-v:z € K}, for each v € S"1.

When K € K7, the radial function (with respect to the origin) px :
571 — R is defined by

px(u) = max{t > 0:tu € K}, for each u € S" .

Note that if K contains the origin in its interior, both hx and pg
are positive. Moreover, they are bounded away from 0 since they are
continuous functions and S™~! is compact. By polar coordinates, it is
simple to see that the volume of K may be computed by integrating the
n-th power of the radial function over the unit sphere, i.e.,

(2.1) V(K) = 1 /sn—l P (w)du.

n

Here we use V(K) for the volume of K (or the usual Lebesgue measure
of K).

Suppose K contains the origin in its interior. The polar body of K,
denoted by K*, is defined by

K'={yeR":y-x <1, foral x € K}.

Let K; be a sequence of convex bodies in R". We say K; converges to
a compact convex set K C R" in Hausdorff metric if ||hg, — hi|| — 0.
If K and K; contain the origin in their interiors, then K; converges to
K in Hausdorff metric implies that

lpx; = pxc|| = 0.
For each f € CT (8™ 1), define [f] € K" by
f1= () {zeR":v-z < f(v)}
vesn—1

The convex body [f] is called the Wulff shape or the Aleksandrov body
generated by f. It is simple to see

(2.2) hip < f,
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and if K € K7, then
(2.3) [hk] = K.

For the rest of this section, we assume K € K. The supporting
hyperplane P(K,v) of K for each v € S"! is given by

PK,v)={zeR":x-v=hg(v)}.

At each boundary point = € 9K, a unit vector v is said to be an outer
unit normal of K at x € 0K if P(K,v) passes through x. For each
n C S™ 1 the reverse radial Gauss image, o’ (n), of K at n, is the set
of all radial directions u € S"~! such that the boundary point pg (u)u
has at least one element in 7 as its outer unit normal, i.e.,

oo (n) = {u € "1 : there exists v € 1 such that upx (u) € P(K,v)}.

When 1 = {v}, we usually write a(v) instead of aj,({v}).

The fundamental geometric functionals in the dual Brunn-Minkowski
theory are dual quermassintegrals. Let j = 1,---,n. The (n — j)-
th dual quermassintegral of K, denoted by Wn_j(K ), is proportional
to the mean of the j-dimensional volume of intersections of K with
j-dimensional subspaces of R"; i.e.,

(2.0) Wy =2 [ v nede,

Wi JG(n,j)
where the integration is with respect to the Haar measure on the Grass-
mannian manifold G(n,j) containing all j-dimensional subspaces £ C
R™, and Vj is the Lebesgue measure in R7. The dual quermassintegral
has the following simple integral representation (see Section 2 in Lutwak
41)):

Wy ) =+ [ pewpa

n

Clearly, the above equation suggests that the dual quermassintegral can
be defined for all real j in exactly the same manner.
The normalized dual quermassintegral W,_;(K) is given by

1
_ 1 . i
(2.5) Wy j(K) = <_/ p]K(u)du>J . for j#£0,
nwn Sn—l

and by

- 1

W, (K) = exp <—/ long(u)du> , for j = 0.

nwn Sn—1

To simplify our notations, we will write
Vi(K)=Wnj(K)  and  Vi(K) = W,_;(K).

The functionals TN/J and V] are called the j-th dual volume and the nor-
malized j-th dual volume, respectively. From the definition of radial
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function, it is obvious that the j-th dual volume is homogeneous of de-
gree j and the normalized j-th dual volume is homogeneous of degree
1. That is, for ¢ > 0,

(2.6) Vi(cK) = dVi(K)  and  Vj(cK) = ¢V;(K).

By Jensen’s inequality, we have

(2.7) Vi (K) < Vi, (K),

whenever j; < js.

2.2. Dual curvature measures and the even dual Minkowski
problem. For quick later references, we gather here some basic facts
about dual curvature measures and the even dual Minkowski problem.

Using local dual parallel bodies, a concept dual to local parallel sets
which give rise to area measures and curvature measures, Huang-LYZ
[32] discovered a new family of geometric measures defined on S"~! in
the dual Brunn-Minkowski theory. The newly discovered measures are
dual to Federer’s curvature measures (see, e.g., page 224 in Schneider
[56]) and are thus called dual curvature measures. For each K € KU
and each 7 = 0,1,--- ,n, the j-th dual curvature measure 5j(K,77) of
K at n has the following integral representation:

- 1 A
(2.8) N
" Jaig(n)
for each Borel set n C S"=1 Tt is easy to see that the total measure of
C;(K,-) is equal to the (n — j)-th dual quermassintegral; i.e.,

6J(K’ Sn_l) = Wn*j(K)'

Moreover, the j-th dual curvature measure is homogeneous of degree j.
That is,
Gy(cK, ) = I (K. ).

From (2.8), it is not hard to see that when j = 0, the measure Co(K, -)
is up to a constant equal to the Aleksandrov’~s integral curvature of the
polar body K* and when j = n, the measure C), (K, -) is up to a constant
equal to the cone volume measure of K.

The characterization problem for dual curvature measures is called
the dual Minkowski problem. The dual Minkowski problem includes the
Aleksandrov problem (j = 0) and the logarithmic Minkowski problem
(j = n) as special cases. When the given measure is even and the
solution set is restricted to the set containing all origin-symmetric con-
vex bodies, the dual Minkowski problem may be called the even dual
Minkowski problem.

The even dual Minkowski problem: Given an even finite Borel
measure p on S" ' and j € {0,1,--- ,n}, find necessary and sufficient
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condition(s) on p so that there exists an origin-symmetric convezr body
K such that p(-) = éj(K, ).

In this paper, a solution to the even dual Minkowski problem, except
for the cases j = 0 and j = n which are the already solved Aleksandrov
problem and even logarithmic Minkowski problem, will be presented.

3. An optimization problem associated with the dual
Minkowski problem

In order to solve Minkowski problems using a variational method,
the first crucial step is to find an optimization problem whose Euler-
Lagrange equation would imply that the given measure is exactly the
geometric measure (under investigation) of an optimizer. To find such
an optimization problem, it is essential that one has certain variational
formula that would lead to the geometric measure being studied. In
this section, both the variational formula and the optimization problem
associated to the dual Minkowski problem will be stated. It is important
to note that the variational formula and the optimization problem were
due to Huang-LYZ [32] and they are included here merely for the sake
of completeness.

Suppose j € {1,---,n — 1} and p is a non-zero even finite Borel
measure on S" 1. Define ® : CF(S"~!) — R by letting

®(f) =~ [ g f@)aute) + g Vi (11).

for every f € CF(S™1). Note that the functional ® is homogeneous of
degree 0; i.e.,
o(cf) = @(f),
for all ¢ > 0.
The optimization problem (I):

sup{®(f) : f € CH(S" 1)},
Since f € CH(S"1), it is obvious that [f] € K. Note by (2.2) and
(2.3),
D(f) < @(hyp).
Thus, we may restrict our attention in search of a maximizer to the set
of all support functions of origin-symmetric convex bodies. That is, if
Ky € K2, then hg, is a maximizer to the optimization problem (I) if
and only if K is a maximizer to the following optimization problem.
The optimization problem (II):

sup{®,(Q) : Q € K},
where ®, : K — R is defined by letting

(3.1) 2u(Q) =1 | legho(v)du(v) +log V3 (Q),
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for each Q € K. Note that on K, the functional ®,, is continuous with
respect to the Hausdorff metric and ®,, is homogeneous of degree 0; i.e.,

0, (cQ) = ©u(Q);

for all ¢ > 0.

In order to obtain the Euler-Lagrange equation for the optimization
problem (I), the following variational formula is critical (see Theorem
4.5 in [32)):

1 -
== v)dC;(Q,v
TG e 100
where hy = hge'?, the convex body [h] is the Wulff shape generated by
h¢, and g is an arbitrary even continuous function on S™1.

Suppose Ky € K7 is a maximizer to (II), or equivalently hp, is a
maximizer to (I). Since ® is homogeneous of degree 0, we may assume
‘E(KO) = |u|. Let g : S"! — R be an arbitrary even continuous
function. For § > 0 small enough and t € (—4,6), define hy : S" 1 —
(0,00) by

(32 logTi(n)

he(v) = hc, (v)e!9), for each v € §" 1.

Obviously hy € CF(S™1). Since hg, is a maximizer to (I) and hy =
hk,, we have

d
3.3 —®(h =0.
(3.3) 5 2() t:O
By definition of ® and Ay, (3.2), and the fact that X~/j(K0) = |u|, we have
d
—®(h
dt () t=0
d 1 _
= -7 (log gy (v) + tg(v)) dp(v) + log V([he])
dt \|pl Jgnr t=0
e ' _
=—-— g(v)du(v) + = / g(v)dC;(Ko,v)
|| Jgn—1 Vj(Ko) Jsn—1 J

:ﬁ <— /Snl g(v)du(v) + /Sn1 g(v)d@(Ko,@) .

Equations (3.3) and (3.4) imply

| otdute) = [ g0)aC(xa.o),

Sn—1 Sn—1

for each g € C.(S™"'). Since both p and C;(Ky,-) are even measures,
we have

u(-) = Cj(Ko, ).
Thus we have,
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Lemma 3.1. Suppose p is a non-zero even finite Borel measure on
SV and j ={1,--- ,n—1}. Assume Ko € K. If V;(Ko) = |u| and

(I)M(KO) = SUP{@M(Q) :QeKLY),
then B
p(-) = Cj(Ko, ).
Lemma 3.1 reduces the problem of finding a solution to the dual
Minkowski problem to finding a maximizer to the optimization problem

(1I1).
4. Solving the optimization problem

In this section, we show that the optimization problem (II) does have
a solution. The key is to prove that any maximizing sequence (of con-
vex bodies) to (II) will have a subsequence that converges in Hausdorff
metric to an origin-symmetric convex body that has non-empty interior.
Estimates of an entropy-type integral with respect to the given measure
(the first term on the right side of (3.1)) and dual quermassintegral (the
second term on the right side of (3.1)) must be provided.

Providing an upper bound for the dual quermassintegral of an arbi-
trary origin-symmetric convex body can be extremely difficult. As a
result, choosing a “proper” convex body to help us with the estimation
is vital in solving the optimization problem. The meaning of the word
“proper” is two-fold: first, the dual quermassintegral of the body cho-
sen must be relatively uncomplicated to estimate or compute; second,
the chosen body must be “close” to the given body to ensure that the
estimate is reasonably accurate. In Huang-LYZ [32], cross polytopes
were used. It turns out that cylinders (sum of two lower dimensional
ellipsoids) will give a much more accurate upper bound.

Let ey, --- , e, be an orthonormal basis in R”. Suppose 1 <k <n—1
is an integer and aq,--- ,ar > 0. Define

2 2
T = {xER”: |m'a§1| T |x'a§’“| <1,
1 k

and |z - ep 124 Flz-en]? < 1}-

Write R = R¥ x R"* with {e1,---,ex} C R¥ and {egy1, -+ ,en} C
R"~%. Define

2 2
41)  Go{rert: 21’ P - 2"' <1} C R¥,
as a;

and
B={zcR" " |z -ep 1]’ + - +|z-en)> <1} CcR"F.
Note that T'= G x B.
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For each u € S™~!, consider the general spherical coordinates,
u = (uy cos ¢, ug sin @),

where u; € S¥71 C RF, ug € S"* 1 c R* % and 0 < ¢ < 5. From the
definition of radial function, we have
pr(u) = max{t > 0: (tuj cos ¢, tugsing) € T'}
= max{t > 0: tu; cos ¢ € G,tuysin¢ € B}

pa(u1) 1
= t>0:t< t <
(4.2) max{ ~ cos¢p T sinqS}
pe(u1) ; 1
:{ g P00 < arctan gy,
3 s
m7 if arctanm < ¢ § -

By applying (2.1) in the k-dimensional subspace R¥ and the volume
of an ellipsoid, we have

1

(4.3) 7 o

pg(ul)dul = wiay - - ag.

The following lemma gives a critical estimate on the upper bound of
the (n — ¢)-th dual quermassintegral of cylinders.

Lemma 4.1. Suppose 1 <k <n—1 is an integer and k < g < n. Let

€1, ,en be an orthonormal basis in R™ and a1, -+ ,ar > 0. Define
2 2
T - el T - e
T:{$€Rni%+"'+|a—2|§1,
1 k

and |z - ep >+ + |7 en)? < 1}.

Then

_ 1 1 1
log V4(T) =+ log (— / p?p<u>du) < Lloglar - a0) + el )
Snfl

nWy,

Proof. Write R" = RExR" ¥ with {e1, - ,ex} C R¥and {ex11,- - ,en} C
R™*. For each u € S"~!, consider the general spherical coordinates,

u = (u cos ¢, ug sin @),

where u; € SF1 C RF, up € S"# 1 c R** and 0 < ¢ < 5. For
spherical Lebesgue measure, we have

du = cos" 1 ¢sin"F 1 ¢ dopduy dus.

Define G as in (4.1).
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Using general spherical coordinates, by (4.2), we have
(4.4)

/ pr(w)du
Sn— 1
arctan ———
Y Y A €
okt Jra cos ¢

1 q
+ / / / < , ) cos* L ¢ sin™ L ¢ dpdug dus
Sn—k=1 J k=1 Jarctan —PG(1H1) sin ¢

arctanm o1 b1
=(n —k)wn—k / / p(ur) cos" 1 psin" T T ¢ dpduy
gk—1

/ / sk_lqbsin”_k_q_l(bd(bdul)
Sk—=1 Jarctan

G (u1)
=:(n — k)w,_ (I + I2).

We will use the change of variable s = pg(u;) tan ¢. Note that

¢ = arctan > ,
pa(u)
§2 —-1/2
cosp= {1+ ) )
( P%;(Ul)
sin ¢ = 1+ ,
pG(u1) ( pe(ur)
s2 |
do = (1 + > ds
P (ur) pG(u1)

First, we compute ;.

82 (k—1—q)/2
1= Sk—1 G 1 {)G(Ul)

s s2 12\ "R 52 -
'<pc<u1> (”p%,«ul)) ) <”pé<u1>> pun

1 g—n
:/ / pl(ur) (pg(ur) + 8%) % s"Fdsduy.
Sk=1.J0
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Since ¢ < n, the function t3" s non-increasing in ¢t. This, (4.3), and
the fact that ¢ > k imply

I < / / PG up)si"s"T k=1 dsdu,
Sk—1

1
(4.5) :/ pG(ul)dul/ s7k=1gs
Sh-1 0

k
= Wgai - - - agk.
g — kKL G

Similarly, for I, we have

oo §2 —(k=1)/2
f=/ I ()
? Sk—1.J1 /%v(ul)

2 —1/2\ ka1 2 ~1
1
5 (1 + 2S> (1 + 28 > dsduq
pc(u1) pe(u1) pe(u))  pal(w)

/k 1/ P (ur) (P& (ur) +s )% s L dsduy .
S

Since ¢ < n, the function t'7 s non-increasing in t. This, together
with (4.3), implies

oo
IQS/ / pg(ul)sqfnsnfqufldsdul
Sk=1J1
o0

—/ plé(ul)dul/ s k1ds
Sk—1 1

= wgay - - ag.
By (4.4), (4.5), and (4.6), we have

_ 1 1 1
log V4(T) = log < /Sn_1 p%(u)du) < glog(al ceag) +c(n, k, q).

Wy,

(4.6)

q.e.d.
Let 4 be a finite Borel measure on S" ! and j € {1,--- ,n —1}. We
say  satisfies the j-th subspace mass inequality if
1) when 1 <1i < j,
/L(Sn_l N L) 1

47 R AL
4.7) A ;

for each i dimensional subspace L; C R™;
2) when j <i<n-—1,

p(S" N L)

|l
for each ¢ dimensional subspace L; C R".

(4.8) <1,
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Let e1,- -+, en be an orthonormal basis of R™. We define the following

partition of the unit sphere. For each ¢ € (0, ﬁ), define

(4.9) Ais={vesS" i|v-e >6,|v-ej| <0, for j > i},
for each i = 1,--- ,n. These sets are non-empty since e; € A; 5. They
are obviously disjoint. Furthermore, it can be seen that the union of
A; s covers S~ Indeed, for any unit vector v € S"~1, by the choice of
J, there has to be at least one i such that |v-e;| > §. Let iy be the last
i that makes |v-e;| > d. Then v € A4; 5.
Set & = span{ey,--- ,e;} fori=1,--- ,n and { = {o}. Define
;75:{065"71 tv-eil >4, |v-ej| =0, for j > i},
;/75:{1)65"_1 tv-eil >0,|v-ej] <6, for j > i}
Clearly, A ; C A; s C A5 and as § decreases to 0T, the set A; 5 gets big-
ger while the set A/ 5 gets smaller. Hence, for each finite Borel measure
pon S
lim (A7 5) = p(S"71 N (& &),
§—0*t ’

lim pu(Afs) = (S0 (& N\ &)
§—0+ ’
This, together with the fact that A} 5 C A;5 C A5, implies
lim p(Ass) = p(S" 1N (& N\ &),
d—0+

and hence
(4.10) lim > p(Ags) = (" N &),

Lemma 4.2. Suppose j is a non-zero finite Borel measure on S
and j € {1,---,n—1}. Let ey, - ,e, be an orthonormal basis in R™.
If 1 satisfies the j-th subspace mass inequality, then there exist tg > 0
and 0 < 6y < 1/+/n (depending only on n, j, u,e1, - ,e,) such that
> by 1(Ap.sy) g {3 ity if1<i<j,

(4.11) o
|l L—jto #fj<i<n-—1

Here A; 5 is as defined in (4.9).

Proof. Let & = span{ey,--- ,e;} for each i =1,2,--- ,n.
Since p satisfies the j-th subspace mass inequality, by (4.10), (4.7),
and (4.8),

i A n—1 ' i < .
lim > p—1 1(Ags) _ p(S™HN¢;) - {] if 1 <4<y,

50+ | || 1 ifj<i<n-—1.

Since the inequality is strict, we may choose ty and 0 < §p < 1/y/n such
that (4.11) is valid. q.e.d.
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The following lemma provides an estimate on an entropy-type integral
with respect to a measure satisfying the j-th subspace mass inequality.

Lemma 4.3. Suppose p is a non-zero finite Borel measure on S™1,
eg>0,andje{l,--- ,n—1}. Letay < --- < ay ben sequences of pos-
itive reals such that a,; > €y and eqy, - -+ , ey be a sequence of orthonor-
mal bases in R™, that converges to an orthonormal basis e1,--- ,e,.
Define the ellipsoid E; by

2 2
x-e x-e
El:{xeR":‘CL—21l|+...+|a+l|§1}‘
1 nl
If u satisfies the j-th subspace mass inequality, then there exist tg, Lo > 0
and 0 < &g < 1/+/n such that for each | > Ly,
(4.12)

1
u| Jsn-a

Proof. By Lemma 4.2, choose tg, dp (with respect ton, j, u,e1,- -, ep)
so that (4.11) holds. For notational simplicity, we write A\; = p1(4;5,)/| 14|
fori=1,--- ,n. Hence

——Zto if1<¢<y,
419 zm 1<
1—jty ifj<i<n-—1

1 .
10g hEl (U)dﬂ(v) Z (; - t0> log(all T (Ijl) + 6(507]7 tO) 50)‘

Since ey, -+ ,en converges to eq,--- , ey, there exists Ly > 0 such
that for each [ > L,
(4'14) leil—ei‘ <(50/27 fori:l,... , M.

Note that +a;e; € E;. Hence, for each v € A, s,, by the definition of
support function, and (4.14),

hi,(v) > |v-eqlai

=lv-e;+v- (e —ei)lag

(4.15) > (Jv- €] — |v- (eq — €)]) au
> anil-

By the fact that A; s, for i = 1,- -+, n form a partition of S"~1, (4.15),
and the definition of \;, we have

1
— log hg, (v)du(v) / log hg, (v)du(v)
1l Jgn—1 l ~ul & Z Aisy !

(4.16) Z <log +log an) 1(Ais,)

0o -
= log 5 + ; Ailogay;.
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Let s, = A\ +---+ X fori=1,--- ,n and sg = 0. Note that s, = 1.
We have \; = s; —s;_1 fori=1,--- ,n. Thus,

n

Z Ailoga; = Z(Sl —si—1)loga;
i=1

=1

n n
= Z siloga; — Z si—1logay
i=1 i=1

n n—1
= Z siloga; — Z silogaiy1
i=1 i=0
n—1
=loga, + Z s; (logag —loga;y1y)-
i=1
Equation (4.17), (4.13) with the definition of s;, the fact that aj; <
-+« < apy, and that a,; > ¢ imply

(4.17)

n 7j—1 .
i
Z Ailogay > log an + Z (—. - lt()) (logajy — log ajt1,)
i=1 =1 \J
n—1
+ Y (1= jto) (logay — log a;s1,)
(4.18) Py

1 .
= (; - to) log(ay - - - aj) + jtolog an

1 .
> ; —to ) log(ay; - - - aj) + jtologeo.

Equation (4.12) now follows from (4.18) and (4.16). q.e.d.
Recall that for each ) € K7, the functional ®, is defined by

B(Q) =

k] Jsn—
where j € {1,--- ,n—1}.

We are now ready to show that if the given measure y satisfies the
j-th subspace mass inequality, then there exists a solution to the opti-
mization problem (II).

log hq(v)du(v) +log V;(Q),

Lemma 4.4. Suppose y is a non-zero finite Borel measure on S™
and j € {1,--- ,n —1}. If u satisfies the j-th subspace mass inequality,
then there exists Ko € K such that

D, (Ko) =sup{®,(Q) : Q € K}
Proof. Let {Q;} be a maximizing sequence; i.e., Q; € K and
llggo ®,(Q)) =sup{®,(Q): Q € K}
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Since ®, is homogeneous of degree 0, we may assume (); is of diameter
1. By the Blaschke selection theorem, we may assume (); converges in
Hausdorff metric to a non-empty compact convex set Kg C R™. Note
that Ko must be origin symmetric. By the continuity of ®, on K7, if Ky
has non-empty interior, we are done. The rest of the proof will focus on
showing Ky indeed has non-empty interior. We argue by contradiction.
Assume K has no interior points.

Let B} € K7 be the John ellipsoid associated with )y, i.e., the ellipsoid
contained in @; with maximal volume. Then, it is a well-known fact (see
page 588 in [56]) that

(4.19) E,CcqQC \/ﬁEl.

Since Ej is an n-dimensional ellipsoid centered at the origin, we can find
an orthonormal basis e, -+ ,e, in R” and 0 < ay; < -+ < a, such
that

2

. 2 . 2
El:{l'eRniix ell’ ++‘x gnl‘ <1}
all Qa

nl

Since the diameter of Q; is 1 and E; C @, we have ayj, -+ ,an < 1/2.
By taking subsequences, we may assume aqyj, - ,ap; are convergent as
l — oo and ey, - - , ey converges to an orthonormal basis e1,--- ,e, in
R™. Since Ky has no interior points, we can find 1 < k <n and g9 > 0
such that

(4.20) ail, - ,aK — 0+,
and
(4.21) Ak41,0,° " 5 Anl > €0-

That k cannot be n is due to the fact that the diameter of ); is 1 and

Q1 C V/nEy.
We will show

lim @,(Q)) = —cc.

By Lemma 4.3, there exist tg, 69, Ly > 0 such that for each [ > Ly,

1
log hg, (v)dp(v) > <; - to) log(ay; - - aj)

+ ¢(d0, J, to, €0)-

(4.22)  ul Jgn-

Choose kg = min{k,j} and ¢p € (j,n] such that % —t < q% <
Note that

L=

(4.23) q0 > ko.
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Define
1 x-eql? T - epl?
T — {meRn:| 121| A Zozl <1,
n — ]{70 koall koakol
2 2
T-e T-e
O e O AT
n—ko TL—/{()
2 2
T-e T-e
= xeRniykil”—F“'-i—MSL
02 ko a2
nfk‘() ll TL*k‘o kol
and |x-ek0+1,l|2+---+|33-enl|2gl}.
Note that for each x € Ej, we have |z - e;| < ay for i = 1,--- ko and

|z ey <ay <1fori=ky+1,---,n Hence x € \/n— koT}, which
implies E; C v/n — koT;. This, and (4.19) give,

(4.24) E; C Ql C \/n(n — ko)Tl

By Lemma 4.1, and (4.23),
_ 1
(4.25) log Vi, (T7) < w© log(ai; - - - akyt) + ¢(n, ko, qo)-

By (4.24), (2.6), (2.7) with the fact that go > j, (4.22), and (4.25),
we have for [ > Ly,

1 _
®,(Q) <~ [ Tomhi (0)du(e) + log Vy(y/nln ~ Fo)T)
1 _
— _m - log hg, (v)du(v) +log V;i(T7) + c(n, ko)
1 _
(4.26) < —m - log hE, (v)du(v) + log Vo (T7) + ¢(n, ko)

1 1
< - <—. - to) log(a; - - - aj1) + —log(ay; - - - k)
J q0
+ C(n,k‘o,qO,(S(),j, tQ,EQ).

When ko = k, i.e., j > k, by (4.26), (4.21), the fact that - —to < &,
and (4.20), we have for [ > Ly,

1 1
,(Q) < - <3 - to) log(ay; -+ ag) + w© log(ay; - - - axy)

+ C(?’L, kOa q0, 507j7 th 60)

1 1 .
= o (5 - t0>> log(ay; - - - ag) + c(n, ko, qo, do. J, o, €0)
— —00.
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When kg = 7, i.e., j < k, by (4.26), the fact that %—to < q%’ and (4.20),
we have for [ > Ly,

1 1
®,(Q1) < - <; - to) log(ay; -+~ aj) + q_o log(ay - - aj)

+ c(n, k07 q0, 507 tOv EU)

1 1
= (q_o — (; — to)) log(ay; - - - aj) + c(n, ko, qo, 60, o, €0)

— —OQ.
Hence,
lim ¢,(Q;) = —oc.
l—00

But this is a contradiction to {@;} being a maximizing sequence. q.e.d.

5. A solution to the even dual Minkowski problem

The next theorem shows that the subspace mass inequalities are suffi-
cient for the existence of a solution to the even dual Minkowski problem.

Theorem 5.1. Suppose i is a non-zero finite even Borel measure
on S" Y and j € {1,--- ,n — 1}. If p satisfies the j-th subspace mass
inequality, then there exists K € I} such that pu(-) = C;(K,-).

Proof. By Lemma 4.4, there exists Ky € K such that
P, (Ko) =sup{®,(Q) : Q € K}

Since ®,, is homogeneous of degree 0 and 17j is homogeneous of degree
J, there exists ¢ > 0 such that

Vj(eKo) = |pl,
and
®,,(cKp) =sup{®,(Q) : Q € K}
By Lemma 3.1,
u(-) = Cj(cKy, ).
q.e.d.

A remark is in order: the proofs in this paper work equally well
(with some necessary changes) in the cases when j = n, which has been
well-treated in the remarkable work [9] by Boéroczky-LYZ, and when
n —1 < j < n, which will be treated in another paper. When 5 < 0, a
complete solution to the dual Minkowski problem for arbitrary measures
(not necessarily even), including the existence and the uniqueness part,
is presented in [69].

As pointed out in the introduction, the necessity of the subspace mass
inequalities are due to Boroczky, Henk & Pollehn [7] (see also Theorem
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1.3). Hence, the existence part of the even dual Minkowski problem
(when the index is integer 1,2,--- ,n) is completely settled.

In Huang-LYZ [32], the existence results were established for all real
numbers in the interval (0,n] whereas the results here are limited to
integers within the interval (0,n]. It would be of interest to extend the
results obtained here to all real numbers.

Appendix A. An example of the subspace mass
concentration for dual curvature measures

Note that the following calculation was also performed in Boréczky,
Henk & Pollehn [7]. The example is included here since it gives critical
intuition to the solution of the even dual Minkowski problem presented
in the current paper.

Let 7,5 € {1,---,n— 1} and ej,--- ,e, be an orthonormal basis in
R™. Define

To={zeR": 2} + .-+ 27 <a? and 22, +-- -+ 22 <1},

where x, = x - e, and @ > 0. Let L; = span{ey,--- ,e;}.
We will compute the limit of the ratio
C;(Ty, Lin S™1)

=~ )

Cj (Ta, Sn—l)

asa— 0. ‘ ‘ ‘
Write R" = R* x R"™ with {er, -+ ,e;} C R and {ej41, - ,en} C
R"~%. For each u € S~ !, consider the general spherical coordinates:

u = (u1 cos ¢, ug sin @),

where u; € S C R, ug € S" P Cc R* and 0 < ¢ < 5. For
spherical Lebesgue measure,

du = cos' ! ¢sin™ " ddpdug dus.
From the definition of radial function, we have
pr, (u) = max{t > 0: (tu; cos ¢, tugsin ) € T}
= max{t > 0: t? cos® ¢ < a?, and t*sin® ¢ < 1}

. a 1
- cos¢’ sing | -
We claim that

(A.2) u € oy (L; N S™1) if and only if pr, (u) =

(A1)

a

cos ¢’

Recall that here af, is the reverse radial Gauss image of T;, defined in
Section 2 and the reverse radial Gauss image is well-defined even for
non-smooth convex bodies.
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Suppose u € af, (L;NS™1). There exists v € L;NS™ ! with u-v > 0
such that

(A.3) pr, (W)u - v = hr, (v).

Since v € L;NS™ !, by the definition of support function and the choice
of Ty, it is obvious that

(A4) hr,(v) = a.

By (A.1), the fact that u-v > 0, and that v € L;, we have

a .
(A.5) or, (Wu - v < Cosd)(ul COs ¢, ug Sin @) - v = auy - v

Equations (A.3), (A.4), and (A.5) imply that u; - v > 1. Since both u;
and v are unit vectors, we have u; = v. Hence, by (A.3), and (A.4),

hr, (v) a a
pr,(u) = = . = -
u-v (uj cosp,ugsing) - v  cos ¢
Now, let us assume pr, (u) = i3 Write u = (u1 cos ¢, uz sin ¢). Let

v=uy € L; N S" L. Then

pr, (Wu-v = (uy cos g, ugsin @) - uy = a = hy, (v).

a
cos ¢
Hence u € o, (L; N S™71).

Definition of the j-th curvature measure (2.8), together with (A.2),
implies

_ 1 arctan% a J )
Ctatins = [ [ ] ( ) cos' 1
n Jegn-i-1 Jgi-1 Jo cos ¢

-sin™ "t pdgpdug dus

1

iwi(n — Dwn i - arctan — o ) )

wi(n = wn—; ; / cosi i1 gsin™ i1 pdo
0

n

By using the change of variable s = a tan ¢, we have

~ . . _ . . ) 1 n ]
(A6) Cj(Tu,L;NS" 1) = Maz/ (a® + 52) 3" " s
0
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On the other side, by the definition of the j-th curvature measure
and (A.1), we have

arctan = J
Ta n— 1 z 1
C ( ’S An i— 1/S’L 1/ <COS¢> ¢

0" pdpdug dus

1 [2 . . .
+ = / sin™ ¢ cos' ! psin™ L pdpduy dusy
arctan +

n

1
2wi(m — )Wy s . arctana o ) )
= wi(n = D)o (aj/ cos' I psin™ "t pdp
0

n
jus
2 i—1 4 s n—i—j—1
+ cos’™ " ¢sin odo | .
arctan%

By using the change of variable s = atan ¢, we have

(A.7)

- o — g S|

Cj(Ta,Snil) _ sz(n 'L)WnlafL(/ (CL —I—S) 2 Sn i— 1d8
0

n

+/ (a® +s)2s”’71ds>
1
By (A.6) and (A.7), we have
Cj(Ta, Lin 8™ 1)
Cj(Ta,Snfl)
B fol(a2 + SQ)j_Tns"_i_lds
fol(a2+52)j%ns”—i—1ds+fl (a? —1—82) 2" gn—i—i—lds

(A.8)

Since j < m, the integrals in the above equation are increasing as a
decreases to 0. Hence

1 1 ifi < i
(A.9) lim (a? +s) Fgnmilgg = {70 DS
a—071 Jo o0, if 1 > j,
and
&0 1
(A.10) lim (a® +s ) 7 I s = =
a—071 Jq i

Equations (A.8), (A.9), and (A.10) imply

. Cj(Tu, Lin S™ 1) iooifq< g,
lim — =47 o .
a—0t  Cy(T,, Sm1) 1, ifi>j.

The above calculation yields,
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Proposition A.1. Suppose i,j € {1,--- ,n— 1}. For each i-dimen-
sional subspace L; C R™, there exists a family of cylinders {Ty} such
that

6j(Ta, L;N Sn_l)

i
im T
a=0t (T, S™ 1) 1, ifi>g.
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